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ABSTRACT

This paper presents and discusses a Mmathematical formalism for simulation discrete
event dynamic (DED)-a special type. of “mm-made” systems to serve specific purposes of
information processing. The main objective of this work is to demonstrate that the math-
ematical formalism for DED can be based upon terminal model of Newtonian dynamics
which allows one to relax Lipschitz conditions at some discrete points.

1. INTRODUCTION

Complexity of dynamical system performance can be significantly enriched by exploit-
ing a terminal model of nonlinear dynamics introduced and discussed in [3,4]. As shown
there, this model can capture stochastic properties of information processing without uti-
lizing a random number generators: a multi-choice response to a deterministic massage is
provided by a failure of uniqueness of the solution due to relaxation of Lipschitz condi-
tions at some discrete points. However, since terminal dynamics is differentiable almost
everywhere (excluding these discrete points), it preserves most of the analytical structure
of mathematical formalism of classical theory of differential equations. A combination
of such ‘(cent radictory” properties - the analiti ci ty and discrectness - gives motivation to
simulate discrete event systems using terminal dynamics.

Discrete event dynamics represents a special type of “man-made”systems to serve
specific purposes of information processing [1]. Models of such systems fall int o several
broad categories of various levels of abstraction. At the logical level, one is only concerned
with the logical order of the events, i.e., with qualitative, or structural behavior of a system;
these models are usually deterministic and untimed. At the performance level, the models
involve random event lifetimes and other probabilistic entities, and are primary concerned
with charact erizing the quantitative aspects of the system. The performance models are
usually based upon generalized semi-Markov processes and st ochast ic Petri nets.

This paper presents and discusses a mathematical formalism for discrete events sys-
tems based upon terminal model of Newtonian dynamics.




2. TIME-DRIVEN DISCRETE SYSTEMS

A broad class of complex dynamical beh aviors can be derived from a simple differential
equation [3]:

= z!/? sin wt, w = cost (1)

The solution to Eq. (1) can be presented in a closed form. Indeed, assuming that z — O
att = O, one obtains a regular solution:

4 .
xr = i(B_u; sin 2%03/2 ifx#0 (2)
and a singular solution (an equilibrium point):

r=10 )
Clearly, the Lipzschitz condition at the quilibrium point z = O fails since

dr
dx

1 )
| = :g:b“% sin wt — 0o at z — 0. (4)

As follows from (2), two different solutions are possible for “almost the. same” initial
conditions. The fundamental propert y of this result is that the di vergence of these solutions
from x = 0 is characterized by an unbounded par: 1eter,o:
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where t, is an arbitrarily small (but finite) positive quantity. The rate of divergence (5) can
be defined in an arbitrarily small time intend, because the initial infinitesimal distance
between the solutions (2) becomes finite during the small interval t ,. One should recall
that in the classical case when the Lipschit z condit ion is sati sfied, the dist ance bet ween
two diverging solutions can become finite only att— oo if initially this distance was
infinitesimal.

The solution (2) and (3) co-exist att = O, and that is possible because at this point
the Lipschitz condition fails (see Eq. 4).




Since:

or
—a;>0at|:v|:/:0,i>0, (6)

the singular solution (3) is unstable, and it departs from rest following Eq. (3). This
solution has two (positive and negative) branches, and each bran ch can be chosen with
the same probabilit y 1/2. It should be noticed that asa result of (4), the motion of
the particle can be initiated by infinitesimal disturbances (that never can occur when the
Lipschitz condition is in place: an infinitesimal initial disturbance cannot become finite in
finite time).

Strictly speaking, the solution (2) is valid only in the time interval
0<t<—, (7)
w
and at ¢ = %" it coincides with the singular solution (3). For t > 27 /w, Eq. (2) becomes

unstable, and the motion repeats itself to the accuracy of the sign in Eq. (2).

Hence, the solution performs oscillations with respect to its zero value in such a way
that the positive and negative branches of the solution (2) alternate randomly after each
period equial to 27 /w.

Let us introduce another variable:

y=x, (y=0at z= 0). (8)
After the first time interval t = 2%
y =+ /OZW (54; sin 2%%)3/2(11 = (LA(%)"VQ = +h (9)
After the second time interval t = 4—5
y=4h +1 (10)

cte.




obviously, the variable y performs an unrestricted symmetric random walk: after each
time period 7 = 27 /w it changes its value on h. The probability f(y,t) is governed by
the following difference equation:

ft+ 2y = S5+ 54 o, [ s =1, (1)

where h is expressed by Eq. (9).

Eq. (11) defines f as a function of two discrete arguments:

y==kh, and t=1Ir, 7= 2~7£, k,l= 0,1,2,-- etc. (12)

W

For convenience, we will keep for discrete variable y and ¢ the same notations as for
their continuous versions.

By change of the variables:

z=p(y),y = y- '(2) (13)

one can obtain a stochastic process with a prescribed probability distribution:

-1
(2, 1) = fle7 (21 Id"(—i;- | (14) .

implemented by the dynamical system (1), (8), and (13).

Here z is also considered as a discrete variable changing at each time-step 7 according
to Eq. (12) and (13).

It is important to emphasize that the system (1), (8), (13) does not have any random
input: the randomness is “generated” by the differential operator in (1) due to violation

of the Lipschit z condit ion.

Let us modify Eq. (1) as following:

U= go(y)ul/3 sin wt, gp(y)' =2 >0 (15)
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where y is defined by Eq. (8).

The solution to Eq. (15) can be written in the form similar to (2):

. 3/2
w= [—33"7(’% 2%’ 1 (16)

where & is given by Eq. (9), while the probability density of ¢(y, t) is expressed by EQ.

(14).

Now we are ready to introduce a d ynamical m odd for the generalized random walk:

5/2
V= qu, o= —(&Q = = const 17
64+/(h)
Indeed, after the first time interval t= 2=
2nfw 3/2
v = :ta/ [4—@2 sin 2%’-tJ dt = +¢(h), (18)
0 Jw 2
After the third time interval ¢ = 42
v = xp(h) £ @(I) etc.. (19)

Thus, the variable v performs a symmetric generalized random walk: after each time
period 7 =27 /w, it changes it value on £¢(h). But ¢(h), in turn, ‘is also a random
variable: its probabilit y densit y follows from Eqs. (13) and (14). Hence, at each step the
variable v have a probabilit y pgx to move from any point vy to an arbitrarily selected point
(3

It should be emphasized that this generalized random walk is implemented by the
dynamical system (1), (8), (14), (15),and (18).Considering v as a discrete variable at
t=—117-

v = F+np(h), (20)
one obtains the governing difference equation for the probability distribution of v:
2m 1 @«
P(v,t 4+ =) = = > pr {2[v — (kL)) + Do + p(kR)]} (21)
w 2 P

[ |




/ Q(v,t)dv =:1 (22)

where
dp~1(kh

1
pe = Jlp™ (kh, 0] | E—UY @)

and n is the number of the discrete valuesin (12).

Applying the terminology of Discrete Event Systems, both simple and generalized
dynamical models of random walks can be characterized as time-drivem systems, since
here with every “clock tick” the state is expected to change with a prescribed probability.

We will stress that although the dynamical system (l), (8), (14), (15), and (18)
has random solution, this randomness is wall-organized: it can be uniquely described
in probability terms with the aid of Eqg. (21). Indecd, if the initial probability distribution

& (v, 0) = Po(v) (24)
f(y,0) = fo(y) (25)
_— (26)

are given, then all the variables in the right-hand part of Eq. (21) can be computed at
each time step 7,and that uniquely defines the left-hand part of Eq. (21), and therefore,
the evolution of the probability distribution ®(v,1t).

Based upon the? system (I), (8), (14), (15),and (18), one can find the functions
Po(v), fo(y) and p(2) in Eqs. (24), (25)and (26), respectively, such that they provide a
required evolution of the probability distribution (v, t).

So far we were concerned with the performance agpects of the time-driven dynamies.
On the logical level, the only function ¢(z) in Eq. (24) contributes into the logical structure
of the system: it prescribes the probabilities Pk in Eq. (21) that the solution move from
any point vgto an arbitrarily selected point vg.

3. EVENT-DRIVEN DISCRETE SYSTEMS
Let us return to Eq. (1) and assume that it is driven by a vanishingly small input e:
i=aPsinwt+e, €6—0 (27)
From the viewpoint of information processing, this input can be considered as a massage,
or an event. This massage can be ignored when z # O, or whenz = O, but the system
is stable, 1.e.,r = Tw, 27w, . .. etc. However, it becomes significant during the instants of
instability whenz=0 at t =0, /2w, . . . etc.Indeed, at these instants, the solution to (27)

would have a choice to be positive or negative if = O, (sce Eq. (2)). However, with ez O
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sgna = sgn & att=0,7/2w,...etc. (2s)

i.e. the sign of & at the critical instances of time (28) uniquely defines the evolution of the
dynamical system (27).

Actually the event € may represent an output of a microsyst em which uniquely controls
the behavior of the original dynamical system (27).

The solution to Eq.(8) now becomes deterministic. if sgne # O at critical points
(28), and instead of Eqs. (9), and (10), one obtains, respectively:

2nfw 4 w 3/2
Yy = sgn e/(; (;3; sin? 51) dt = h sgn e, (29)
y = hsgn€l + h sgneg + etc. (30)

where €1,€2,. .. arethevaluesof e at t = O, 27 /w etc., respectively.

The probability y f(y, t ), instead of Eq. (11), is governed by the following difference
equation:

27
flyst+—)=pfly—ht)+ (1~ p)f(y+ hyt) (31)
where
1 ifsgne=1
p=< 0 if sgn e=~1 (32)
% ife=20

Actually the evolution of the probability distribution in Eq. (31) is represented by
rigid shifts of the initial probability distribution f(y, 0), unless sgn & = 0.

Let us modify now Eq. (15)in the same way as Eq. (I):
i =y’ sin wt-+e, €0 (33)

Then the solution to Eq. (17), is written as:

7




= $7(}1) sguey+p(h)sgné€z+ « « -ete. (34)

where g1,€2,"“ -are the values of eat t = O, 27 /w etc., respectively.

Unlike the previous case (see Eqs. (18-19)), now the variable v defined by Eqgs. (1), (8),
(17), and (33) perform a non-symmetric generalized random walk: after each time period
7 = 2xw/w, it changes its value on ¢(h)sgne, i.e., ina certain direction defined by the
event g, (unless sgn € = 0). But ¢(h) is still a random variable whose probability density
follows from Eqs. (13) and (14). Hence, at each step the variable v have a probability y to
move from any point vg to an arbitrary selected point Yk in the direction defined by sgn &.

Introducing v by Eq. (34), one obtains the governing difference equations for the
probabilit y dist ribution of v:

(v, t + 27}) = Z}’k {p2[v - (k)] + (1= p)P[v+ p(kh)]} (35)
k=1
/‘00 p(v,t)dv=1 (36)

where Pk and p are expressed by Eqs. (23) and (32), respect ively.

Thus, although the dynamical system (1), (8), (17), and (33) has random solution, its
probabilistic properties are uniquely defined by Egs. (35) and the constraint (36).

It should be noticed that the solution to Egs. (35) or (21) does always automatically
satisfy t he constraint (36). That is why, in general, it is more convenient to consider
® in Eqs. (35) or (21), as an auxiliary (not normalized) function while introducing the.
normalized probability distribution by the following formula:

d’(v t)
fw (v, t)dv

(v, 1) (37)

Then

/ @)(v, t)dv =1 (38)

— 00




Comparing the previously considered dynamical system (1), (8), (14), (15), and (1S)
with the dynamical system (1), (8), (17), and (33), one can see a funds.ment al difference:
the latter is driven by a massage € whose changes are independent upon the “clock tick”
of the dynamical system itself. This massage, in general, can be an output of another
dynamical system with its own time scale, or it can depend upon the variables (or their
probabilities) of the original dynamical system. In all these cases, the massage ¢ can be
treated as an independent event, and therefore, the dynamical system (1), (8), (17), and
(33) is driven by events.

In conclusion of this section we will review the structure of the solution to Eq. (35)
which describes the evolution of the probability y distribut ion ®(v,1).

Introducing the displacement operators

E6(t) = 6(t + ?5-), Eub(v) = 6(v 4 h) (39)

one can rewrite Eq. (35) in the following form:

{Bt=Y mlpB™* +0- DP9 = 0 (40)
}

k=1

Applying Bool’s symbolic method, i.e. replacing the operator E, by a constant A, one
arrives at an ordinary difference equation:

n
(E/- )% = 0O, X = Zpk [p/\_k + (1 - p))\k] = const (41)
k=1
The solution to this equation in a symbolic form is:

(v, 1) = Mo (v) (42)

where p(v) = ®(v, O) is the initial probability distribution of v, and £ =0, 1, 2, - -+ etc.
(see Eq. (14)).

Obviously that for £ = O:

O(v,1) = p(v) (43)



Then, for £ = 1:

n

- 2k 2wk
Fo,) = 3ok brplo = )4 (=l —)] (44)
Continuing this process for £ = 2,3,. . . etc., one arrives at the following recurrent
relat ionships:
n
ok 27k
$(v,teg1) = ;pk [p2(v — -A;—,tl) +(1-p)2(v+ —-‘;—,tt)] (45)

Hence, based upon the initial condition (43), the evolution of the probability distri-
bution ®(v,t)can be uniquely defined by Eq.(45).

The solution to Eq. (21) can be obtained from (45) if oneset p = 1/2.
It should be emphasized that Eq. (49) is a piecewise linear: indeed, it is linear as long

as the massage ¢ does not change its sign. However, since this sign may depend upon time

t, or UpOL the st ate variable v, or even upon its probabilit y j(v), globally Eq. (49) can be
linear with variable cocflicients, or even nonlinear.

4. SYSTEMS DRIVEN BY TEMPORAL EVENTS

In this section we will assume that the message € is given as a function of time :

& = €(t) (46)

We will start with a simplified version of the system (1), (8), (17), (33), assuming that
in Eq. (14)

{)/ if |z]|<nh
y:

_ (47)
O otherwise

This means that at each state the variable v have equal probability to have steps
+h, £20,““ “ Fnh.

One can rewrite the system in the following form:
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w=yu'Psinwt + &), | e(t) |<| u | (48)

‘i):(yu, « = const (S(}e Eq(17)) (49)

As shown above, Eq. (11) can be implemen ted by the dynamical system (1), (8) which is
not coupled with Egs. (4S) and (49).

Now Eq.(35) describing thee evolution of the probability distribution of the variable
v reduces to:

O(v,t + ?g—) = lz qu)(v —kh)+ (1 - p)®(v + kh) (50)
k=1

7
while p is given Eq. (35).
We will illustrate the solution to the dynamical system (48) as well as to the associated

probability equation (50) by assuming that in Eq. (48):

e(t) = .50 sin 2, €0 = const << 1 (51)

First consider the case whenw/Q is irrational, i.e.,

w ,m
b 52
Q7 n (52)
where m and n are integers.
Then at the critical points:
2
t=""¢ =12 (53)
w
ey # O (54)

and therefore, in Eq. (47):

11




X s Ak 1l <8 <14 )
— n k=1 ] 2{ = w — 2¢ 55’ 56
A {‘ e AR 18 <14 5 (5559

For n = 1 the solution to Eq. (50) can be presented inthe form of a propagating
wave:

/\tv(l’) - v(P('U) - (’U + t) (57)

where the signs + and - correspond to (55) and (W), respectivel vy.
Actually in this particular case the solution remains fully deterministic if the initial
conditions to the dynamical system (48), (49) are deterministic.. In terms of the solution

(72), this would mean that ¢(v) as well as ¢(v & t) are the § functions.

Turning to the general case of Eq. (50), let us apply the solution (4 5). Then, for the
first time- step:

(v, ty) = ch(v - 2—7” , ¢ = d(v,0) (5s)

Hence, the solution starts with n waves propagating in the same direction, but with
different speeds. Application of the solution (45) t o the next time-steps shows that these
waves start interacting and the structure of the solution Peco mes as complex as the linear
wave interference.

For the case (56), instead of (58) one obtains

1 2nk
(v, 1) = = — = 59
(0t) = = > p(v+ =5), ¢ = B(v,0) (59)
k=1
i.e., a similar wave train propagates in opposite direction.

Let us replace the condition (52) by the following:

W m

b 60
Q n (60)

Then at some of the critical points (53):

12




sgne(t)=o (61)

and therefore, all the three casesin (32) can occur.

Then, instead of (58)and (59), the following solution canbe obtained for the first
time-step:

n

1 <x— 2nk 2nk
(I’(’U,t]) = -é;l_ L I:(p(v - —w—)a+9°(v + —w_) P = (I’(’U,O) (62)
k=1

i.e., the solution starts with two trains of waves propagating in opposite directions,

In all the cases when the message € depends on time, Eq. (35) remains linear (but
with variable coefficients).

5. SYSTEMS DRIVEN BY STATE-DEPENDENT EVENTS

In this section we will discuss more complex structure of the input message € assuming
that it depends upon the state variable wv:

& = Ev) (63)
We will start with the simplest case when
& = —72”,72 <<1, (64)

It can be verified by qualit ative analysis of the system (compare with Egs. (48) and
(49) ):

u = yu'? sin wt —y%v (65)

U = qu (66)

that its solution will randomly oscillate about the point v = 0.

13




Indeed, when v >0, then sgn e <0, and v decreases; when v <0, then sgne >0,
and v i ncreases. But whenv = O, then sgn e = O, and the solution can escape the point
v = O with the same probability 1/2 to the right or to the left.

The same result can be obtained by a formal analysis of the solutions (58), (59), and

(62). Let us assume that the initial condition v(t = 0) was set Up randomly with the
probability distribution:

0 otherwise

q):{a if [v]< ok (67)

in which 7 is given by Eq. (9), and £ is given by eq. (12).

Since the area enveloped by the function ¢(v,1) in (67) is shrinking, one have to turn
to the normalized distribution (see Eq. (37):

d(v,t) = { Thn v g - he .

0 otherwise

As follows from (68), in a finite thme

T = ()

the solution degencrates into a i-function.

This means that the solution will arrive? at the point v =: O with the probability 1.
However, at this point

sgn & =: (70)
and Eq. (57) must bereplace by Eq. (62) at n = 1
During the next time step the solution will be:

& - { Yho f|v|She oy g 27 1)

0 otherwise w

14



This describes the onset of diffusion of the ii-function in both directions. However,

*
for t >t, Eq. (62) must be replaced back by Eq. (57) since now sgne # O, and the
solution approaches the attractor v = O again as a 6-function. This periodic (in terms of

probability) process corresponds to random oscillations of the dynamical system about the
point v = O which qualitatively was described above.

In general case when n > 1, the behavior of the solution following from Eels. (58) and
(64) remains qualitatively the same, with the only difference that the periodic behavior of

the solution around the point v = O is replaced by multi - periodic one, while the largest
amplitude of this oscillations:

A =nhw (72)

Let us assume that instead of (64), the function

& ==¢(v) (73)
has several zeros
e(v;) = 0,ande(v;) = O, 2,5 = 1,2, “ “ “ cte. (74)
where
de de
o lo=v; < 0, and o lo=v; > 0 (75)

Start with the case when the largest step in the generalized random walk is larger
than the largest dist ante bet ween the neighboring zeros v j:

nhw > maxj=1z2.. |vj —vj-1 | (76)

Then the solution will eventually visit all the zeros vi with the probability proportional
to tile distance Iz)j*vj_ll where

v; < v < vy (77)

15




In the case when the largest step nhw is less than some of the distances between the
neighboring zeros v ;:

nhw <|5j - {’j--l (78)

the solution will be trapped in the basins of these zeros vi for which:

t*)j< (EX <t*)j+1 (79)

The zeros v; can be considered as minima of the function:

€= /e(v)dv (80)

This means that the dynamical system (65) (66) can be exploited for finding local
minima of an arbitrary function (80) such that these minima will be visited by the solution
with probabilities proportional to the sizes of their basins.

That “rule” can berearranged if one introduce in Eq. (13) the following change of
variables:

y = 2(1 + p%e?), B =: const (81)

Then, with reference to Egs. (15), and (18), one concludes, that in the dynamical
system (65), (66), the largest step I of the generali zed random walk will depend upon the
depth of the minimum of the function (80):

H = nhw(1 + B2%e?), B const (82)

Hence, the solution of the dynamical system (65), (66) equipped with the additional
rendition (81 ), will now visit the local minima of tile function (SO) with probabilities which
are proportional to their dept hs as well -as the sizes of their 1 resins. In other wends, this
dynamical system, with sufficient ly large 3, will fi nd the global minimum of the fund ion
(80).

More sophisticated “rules” of performance of the dynamical system (6 5), (66) can be
implemented by changing the function ¢ in Eel. (13);

s
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6. EVENTS DEPENDING UPON STATE VARIABLE PROBABILITIES
The complexity of the dynamical systems considered above will be significantly en-
riched if events depend upon probabilities of the state variable v, and in particular, upon

its statistical invariants such as expectation, variance, etc.

Starting with the dynamical system

u=yuPsinwt + ¢ (83)
V= au (84)

assume t hat
e =—7%0, v = const <1 (85)

in which v is the mat hematical expect ation:

= /00 vo(v, t)dv (86)

Two fundamental properties make the system (83), (84) different from all the previous
Cases ,

Firstly, this system is coupled with the associated probability equation (35) since it
contains the probabilit y distribution ¢ as a new unknown (sec Eq. (86)).

Secondly, the probabilit y equation (35) becomes nonlinear since now the variable p
explicitly depends upon the unknown distribution ¢(v,t)(see Egs. (32), (85)and (86)).

Nevertheless, Eqs. (83)-(W) are simple enough to be treated analytically. Indeed,

consider the problem with the initial condition (67). As follows from the symmetry of (67)
with respecttov = O:

0=0 at t=0 (87)

and t herefore

17




sgn&=0 at t=0

(8S)
The governing equation for the probability distribution for this casec is obtained from (35)
by salting

Il

S

(89)

Hence, the solution to Eq.(35) starts from a symmetric diffusion, and therefore, the
conditions (87), (S8), and (89) will persist. Eventually the solution will approach zero:

¢(U» t) — 0, |7 ~— co

(90)
Thus, despite an apparent similarity between the dynamical systems (65),(66) and (83),
(84), (85), their behaviors at the same initial conditions are significantly different.

As a second example, replace Eq. (85) by the following:

&

—v}Lo — (v —v)%),y <1,L = const
where

(91)

(v=0)% = Var () = 0% = [w (v — V)2 ¢(v,1)dv

(92)
and analyze the solution at the following initial conditions:

1 fo<ov<llL
t)=4J1 HUSVS
o) ={ 1

. (93)
otherwise
Sinceatt=0

12
and therefore

(94)
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sgne=—1 (95)

the initial probability distribution (93), will shift to the left until

Sgn & =0 (96)

For a simple random walk, i.e., when n = 1, the solution to Eq. (35) for ¢(v,t) has
the form of a single wave propagating without deformation (see Eq. (57)). In this case the
state (96) can be found analytically.

Indeed, since the solution ¢(v,t)can be represented by a moving rectangular, one.
obtains:

. a;+a R L?
1):—]-2 2 Var (v)=~1—?, L=a; -~ a (97)

where a; and @2 are the coordinates at the right and the left ends of the rectangular,
respectively.

Then the condition (96) occurs when

= —L 98
4 12 (98)
l.e. when
1 oS <u< L * 5w L
o,t) =< L M Tl Vayy at 1= — —— 99
¢(v,1) {O otherwise ' 6 hw? (99)
The solution (99) is stable since
% Je
Y d — =0 ¢ = |
D2 <0 and D, 0 at e=0 (loo)

*
and therefore, it will be valid for ¢ >1.
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Hence, the dynamical system (83), (84), (91) subject to the initial conditions (93)
eventually approaches a stationary stochastic process with the probability distribution
(99). However, this distribution depends upon the initial conditions (93) and therefore, it
does not represent an attractor.

Such a simple analytical result could be obtained only for n= 1. If n >1, the initial
probability distribution changes its original shape.

7. MULTI-SCALE CHAINS OF EVENTS

In many problems of operation research, and especially, in decision analysis, one class
of events can be much more important than snot]] er, so that in the presence of the first
class of events ¢, the second class €2 become decisive. In terms of the dynamical system
), (8), (17), and (33), (46), this condition can be incorporated by modifying Eq. (46) as
following:

g = 8ey+ 8%y, 0<é<1 (101)

Here €; and €2 can be considered as functions of time?, state variable and their probabilities,
i.e.,

61251(t,’1),f},' . ‘),62 :Eg(t, 'U,'f),--') (102)

Obviously, the second term in Eqg. (101) can beignored if €y # O at the critical points
(12), However, if £, =0, but €2 # O at these points, then the dynamical system is driven
only by the event €2.

The evaluation of the probability distribution at v is described by the same equations
(35), and (36), but Eq. (32) defining the probability pin there should be modified as
following:

1if sgne; = 1,orsgney=- O, but sgne=1
p =¢ O ifsgnér = -1, orsgn e O, but sgne= 2 (103)

L i e -0 - o -
5 if sgne; = 0, andsgné€2 = O

In the same way one canintroduce a multi-scale chain of events by modifying Eq. (101)
as following:

e=2de1 4+ 6%+ 6%,, 0<iK1 (104)
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with the corresponding mollification of Eq. (104).

8. MULTI-DIMENSIONAL SYSTEMS
So far we were discussing the dynamical systems with only one state variable v (while

u,  and y played the role of auxiliary variables). However, all the results obtained above

can be generalized to dynamical systems which are characterized by the state variables
vt =1,2-n.

Let us start with Egs. (1) and (8) and rewrite them inthe following form:

& - x? sinwt, ¥iox (105)

As follows from (11), the probabilities fi = fi (vi, 1 ) are governed by the difference equa-
tions:

it + 25y = 2 il = )+ i+ ), [ Ruetd =1 (100)

where h is expressed by Eq. (9).

By changing variables

Z; = LP:'('!II R yn)’ Yi = L”):] (z] y zn) (107)

one can obtain a stochastic process with a presciibed probability distribution. Indeed,
since ¥i in (105) are statistically independent, the joint probability

f(yl 7y'2"'yn>t) = ﬂ?_]fi(yiat) (108)

and therefore, the? joint probability for 2
n -1 ayi
7/)(‘71 y T Ty t) = ni-_—:lfi [‘10:' (2] y z,,)] I det 5: (109)
Zj
Hence, the dynamical system (105), (107) characterized by the state variables?15---2,,
performs a random motion with the joint probabili t y function (109) found with the aid of

the difference equations (106).
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For better interpretation of Eq. (109), reduce Eqs. (107) to the. following parameter-
ized form

= (Z T,J,yj) (7(”) ~tanh (+), T7ij = const (110)

Here () is a sigmoid function, while the representation (110) is “borrowed” from the
neural net work architect ure.

Then

Yi = Z 07 1(2;), 07(-) = Arctanh (.) (11"1)

and T}; are element S of the inverse matrix |[7;]|

|75 == 1IT507 (112)
Since
Det gf)’ = Det ||-1T‘!;?||, -1<z;<1 (113)
one obtains instead of (109) :
7!
(21, 2y t) = My fi [}ﬁ "‘(zj)} det | 5 —sz. I (114)
i+1 :

As follows from Eqs. (106), each variable ¥i performs a simple symmetric unrestricted
random work, and t herefore,

filyi) = 0 at t-+ 00, ~00 < y; < 00

However, as follows from Eq. (110),
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-1 <2z <1 (115)

and consequently,

@(z1,% " Zny 1) >0 at t - oo (116)

(Otherwise the condition [*_¢(z1,. .. 2n,t)d2; . . . dzy=1cannot be enforced).
Thus, the solution to the dynamical system (105), (107) approaches a steady stochastic

process (i. e., a stochastic attractor) with the joint probability expressed by Eq. (103) at
t— o0

Yolz1. .. 2zn) = @(21* **2Zu,t) att — oo (117)

Obviously ¢, is uniquely defined by the constant 7;; via Eqs. (111) and (1 13), and there-
fore, one can prescribe the joint probability ¢, by an appropriate choice of these constants.

Applications of stochastic attractors to information processing were discussed in [3,4].

Let us turn now to Eqs. (33) and (17) and generalize themn to the following system:
Ui = goi(y(i))u:/3 sin wt + €;(1,v),0 < &; € 1, € = €i(t,vi,0i ) (118)

Vi = QU; (119)

where « is expressed by Eq. (17),

Then one arrives at the difference equations for the probabilities ¢i (vit ) similar to
eqs. (35), (30):

¢i(vi, t + %}) = > ppidilvi — @ik + (1= pi)dalvi — (kD)) (120)
k=1

Here, with reference to Eq. (32):

23




1 if sgnéei = 1
pi=< 0 sgn & == ‘1 (121)
% ife=0
and with reference to Eq. (23):
. ~ do—1 i
pY = filer (kh, 1) | “(%f l, 2= pi(y™) (122)
)

where fi is defined by Eq. (106).

So far the variables viin Eqs. (1 13) and (119), as well as the probabilities ¢iin Eq.
(120), areindependent. That is why the joint probability ¢(vy, . . . v,,, 1) can be found as:

H(v1, -+ vn,t) =M di(vi, t) (123)

Let us change variables v; as following:

w; = a(Z T;jv;), where v; = ZT{ja"‘(wj) (124)
i==1 i=1

Here 0,071, Tijand T

;; are defined by egs. (110), (111) and (1 12).

Then the dynamical system (1 18), (1 19) is expressed via the new variables wi:

Ui = @i(y(i))it}/z sinwt + &ty vi(wr, - “wy)] (125)
2, -
w; = a1 - w?) Z: Tiju; (126)
=1

The joint probability 8(wy, - . - w,, 1) is found from Xq. (123) by formal change of variables:

!

T!.
(U3, + Wy, 1) = ¢lor(wr, . L wy, )y upwy, . wy)] Det | 1_';2 I (127)
3
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where vi(w1, -+ wy, ) are given by Eqs. (124), while ¢;(v;,t) are defined by Egs. (120).

Thus, the dynamical system (125), (126) represents an n-dimensional generalized non-
symmetric random walk.

After each time period 7 = 27 /w, all the variables wichange their values on

Aw; = (sgn €;)pi(h) if €; #0, ' -(128)

where ¢i(h)arerandom variables: their probability densities follows from Eqs. (106) and
(122).

The sizes of the steps ( 12S) can be correlated if one introduces the following con-
straints:

>: QijSDj(y(j)):O, Qij-const , m 7 1, (129)

i=1

where, for the concretene g, i () can be chosen as:

@i(*) < tanh(-) (130)

By appropriate? choice Of the coefficients §ij, one can create more and less preferable
transitions of the dynamical system from one state to another.

The directions of the steps (12S) are governed by the signs of the events &i. Therefore,
according to Eq. (125), they depend upon the time ¢ and the st ate variables wi. In general
case they can also depend upon the statistical invariant Wi, w? ete.

Special attention should be paid to the branching points at which
;=0 (131)

At these points the direction of the next step is not defined:

Dw; = +pi(h), (132)

so with an equal probability 1/2 the variable wicanmove in positive or negative directions.
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From the viewpoint of information processing, the. branching points are very impor-
tant: they incorporate the probability of “sudden” changes inthe behavior of the dynam-
ical system. Obviously, the location of these points as well as tile domains of positive and
negative €icanbe uniquely prescribed by the constants 7;;.

Thus, the. behavior of the dynamical system (125), (126) is uniquely defined by tile
joint probability evolution (127), and it can be prescribed by the appropriate choice of the
constants T, and ;.

It should be emphasized that the variables w; in the system (125), (126) are coupled
in two different ways: the coefficients §2i; provide statistical correlation between the sizes
of steps Aw;, while the coefficients T,correlate the state-clc~l]cliciclit events €i which are
responsible for dire ctions in which the dynamical system moves.

Hence, even a brief analysis of the performance of the dynamical system (125),(126)
demonstrates that thecomplexity of its behavior inatches the complexity of behavior of
typical {list.r~?te-c?vc?llts systems which occur ininformation processing structures, in social
dynamics, in decision making processes, etc. At the same time, this dynamical system
possesses a relatively simple and fully tractable an al ytical st ructure which allows one to
analyze it not only numerically, but qualitatively as well.

9.SYNTHESISOF DISCRETE-EVENTS SYSTEMS

So far our attention was focused on analysis of terminal models for discrete events
dynamics. In this section we will draft possible approaches to synthesis of these systems.
Since? the discrete-event dynamical systems discussed above, are uniquely defined by the
constant parameters T and §);; (in the sense that these parameters uniquely define the
evolution of joint probability of the state variables, given by Eq. (127)), the problem of
the synthesis can be reduced to finding the parameters T,and 2ij in such a way that the
objective of the performance is achieved.

We will consider four problems of the synthesis associated with systems identification,
optimization based upon global objective, optimizat ion based upon local rules, and systems
with collective brain.

a. System Identification

The problem of system identification arises when the anal ytical structure of the dy-
namical process performed by the system is unknown. Then, based upon experimental
data, a phenomenological version of the dynamical system which has an identical input-
output characteristics is developed. For deterministic systems, the process of parameter
identification reduces to a nonlinear optimization problem. The same approach can be
formally applied to a discrete-event system if the objective is to reproduce its behavior
in terms of state variable probability evolution. Indeed,in this case one can turn to Eq.

26



(127) which uniquely defines this evolution in terms of the parameters T;; and §2;; and
solve the inverse problem of finding these parameters from given input-output data [2].

Recently, along with the formal mathematical approachto system identification, sev-
eral biologically inspired methods borrowed from tile neural networks theory were devel-
oped. In connection with the discrete event systems, the strategy for application of these
methods may be the following.

Let us assume that experimentally observed behavior of the system can be statistically
approximated by a histogram which describes the distribution of frequency with which
certain states are visited by the dynamical system. Such an approximation is biologically
meaningful since the frequency mentioned above is proportional to the strength of the
memory trace for the corresponding pattern of behavior.

If the experimental histogram is presented as

~

$ = d(wr, - wy) (133)

then, int reducing the “energy” function:

E = / [B(wy, - wy) = (wr, -+~ wy, Tijy L)) dwy, - - - dwy,, — min (134)
Wy, Wy,

one can derive the following learning dynamics:

. OFE . JOF
T;; = -—(—,_)—QTJ_, Q; = _O_Q,; (135)

where ¢(wy, ““ “ wy, T, §2:5) canbe found as a solution to Eq. (127), or it can be reproduced
* *
by the dynamical system (125), (126) for each particular Tijand $ij-

The system (135) will converge to a minimum (which will be a global minimum if ¢
is a quadratic formof T,;, and § j ), since E plays the role of the Lyapunov function.

b. Optimization Based Upon Global Objective
In many problems of operation research, the olyjective of the performance of a discrete
event system is to minimize expectations of a certain combination of state variables with

possible const mints imposed upon other statistical invariants, for instant:
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E = 8(w,,- - w,) —> min, (136)
or

plo
E = 6(wy, - -+ Wy, t)dt — min, (137)
4y

while

2
w? < {:)i: const (138)

Clearly the solution to the problem of finding the optimal values of T, and Qi; for
the dynamical system (12 5), (126) minimizing the performance j;, qices (136), 01 (137) can

be reduced to the case (134), (135) considered above.
c. Optimization Based Upon Local Rules

In many real-life. situations, a member of a hiological, or a social system does not
have an explicitly formulated global objective for the whole system. Instead, it has its
own local objective which can be partly compatible with, and partly contradictory to the
local objet.tives of other members. In addition to that, each member may try to copy the
behavior of a “successful” neighbor, or a leader, based upon local rules, and these rules
couple the evolut ion of all the members of the system. Eventually such a system may
approach a state which can be interpreted as the global objective of the performance.

Let us turn to analytical formulations of the local rules.

The local objectives of each member (or, a dynamical unit) can be introduced by
reducing Eq. (136) to the following:

E; = E;(w;, T, §2i) — min; (139)
where
i OE; . oE; .
Tiiz—-a*ﬁ,ﬂﬁ= 30, 1=12-n (140)

Clearly, Eq. (140) defines only the diagonal elements “of the matrices T,; and $2ij-
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In order to define the non-diagonal elements of these matrices, first we will assume
that the indeces i and j Of the elementsTi; and$2i; are related to spatial locations (cm
coordinates) of the corresponding elements so that the positive integer |¢— j| is propor-
tional to the spat.ial distance between the dynamical units characterized by the variables
Wi and w j. Then, it can be assumed that T is inversely proportional to the distance
|7 -j |a(i# 7)-Indeed, it would mean that the close. neighbors effect each other behavior
more strongly than the more distant ones.

However, the spacial distance between the dynamical units is not the only measure of
the degree of interaction between them: the distance in the functional space may occur to
be even more important. Such a distance between the units 7 and j can be introduced as
the scalar |Wi— w;|. Then the local rule for the non-diagonal elements can be formulated,
for instance, as following:

J5]

T= —2
Vi

- Wy—w; 2 . -
e imv) — T (G # 7) (141)

where « is a constant of the same dimensionality as 1 /w?, and 8 is the constant. The
coefficients ij.. j,canbe defined in a similar way.

As follows from Eqg. (141), the interaction between two dynamical units increases with
the decrease of both the spatial distance |i— j|anda functional distance |Wi— w;|.In
simple words, it means that the strongest interaction occurs between close neighbors who
are 1 the same “income” bracket.

As a result of the local rules (140), and (141), the dynamical system (125), (126) will
eventually approach some stochastic process which can be associated with a certain opti-
mization problem defined implicitly via these rules. However, in general it is a very difficult
(if not an impossible) task to reconstruct the global objective of the system performance
based only upon the local rules, but without an actual run of the system.

cl. Systems with Collective Brain

The concept of the collective brain has appearcd recently as a subject of intensive sci-
entific discussions from theological, biological, ecological, social, and mathematical view-
point [4]. It can be int roduced as a set of simple un its of intelligence (say, neurons) which
can communicat e by exch ange of informat ion without explicit global control. The objective
of cach unit may be part] y compatible and part ly cont radi ctory, i .e., the units can cooper-
ate or compete. The exchanging information may be at times inconsistent, often imperfect,
non-det erminist ic, and delayed. Nevertheless, observations of working insect colonies, so-
cial systems, and scientific communities suggest that such collectives of single units appear
to be very successful in achieving global objectives, as well as in learning, memorizing,
generalizing and predicting, due to their flexibility, adaptability to environmental changes,
and creativity.
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In [4] collective? activities of a set of unites of intelligence were represented by a dynam-
ical system which imposed upon its variables different types of non-rigid constraints such
as probabilistic correlations via the joint density. It was asswmed that these probabilistic
correlations are learned during a long-term period of performing collective tasks. Due to
such correlat ions, each unit can predict (at least, in terms of expect at ions) the values of
parameters characterizing the activities of its neighbors if the direct exchange of informa-
tion is not available. Therefore, a set of units of intelligence possessing a ‘(knowledge base”
in the form of joint density function, is capable of performing collect ive purposeful tasks in
the course of which the lack of information about current states of units is compensated by
the predicted values characterizing these states. This means that actually inthe collective
brain, global control is replaced by the probabilistic. correlations bet ween the units stored
in the joint density functions.

In the framework of the discrete events dynamics considered above, the collective
brain paradigm can be incorporated in the. following way.

Let us assume that each member (or a dynamical unit) characterized by the variable
wiahds its own version of the global objm tive of tile whole dynamical system which can

E; = 8;(w;,---w,) -— min (142)

while, in general,

Ei# E; if i+ (143)

Each unit canlearn (in its own way) the global objective of the system during previous
collect ive tasks. Based upon that, it may “derive” ‘its own version of the learning dynamics
similar to (135):

pb 9Bk o OF

S = = c=1,2,--- 144
1y aTU iy OQij, k ) n ( )

and therefore, its own version of the whole. dynamical system in the form similar to Eqs.
(125) and (126):

(k) (3)

= @i(yy Ju ‘1-/' coswt + g;{t,vi(wy,-- wn,w] ,- w(k))] (145)
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n
u')l(k) = afl - (wfk))z] z: T,-(f)ugk), k=1,2,---n
=1

Here u;, wy oy - w,, are the actual values of the variables characterized the dynamical
systems, and ul,(), wk) “ ~wj are the. values of the same variables predicted by the kth
H 3 H (I) — . (') = Wi
dynamical umt, while u;’ = u;, w; i
It is assumed that in the course of performance of the original dynamical system (125),
(126), not all the actual values of the variables u,and w,are available. In this case, the
unavailable? variables are replaced by their predict ed values, while each dynamical unit
predicts them based upon its own version of the dynamical system (see Eq. (145).

Hence, as a result of the collective? brain paradigm, the original dynamical system
(125), (126) of 2n equations with respect to 2n variables: wiand W: is replaced by t he sys-
tem (145) of 2n? equations with respect to 2n? variables: uSk) and wfk) (1 = 1,2, 00071, k =
1,2-..n).

Since the last system has the same dynamical structure as the original dynamical
system (125), (126), its solution can be described by n?-dimensional joint probability
similar to (127):

0==0(wy, - w,, ugg .. w - (1) ™) (146)

As follows from Eq. (146), the dynamics with the collective brain is less predictable
than the original dynamics. However, in contradist inction to the original dynamics which
requires a global control for its performance, the last version of dynamics is more flexible:
it can perform relatively well bhased upon t he auton omy of t he dynamical units which can
predict the events if the actual values of the variables are not available.

The autonomy of the dynamics with collective brain can be increased if each unit can
have not only its own version of the global objective of the system, but also its versions of
the global objectives of others dynamical uni ts. Clearly such an ability will require decper
correlations between the? d ynamical units which can be achieved by more intensive learning
during the? previous collective tasks. From the analytical viewpoint, the complexity of this
dynamical system will be significantly higher: the system having the same structure as Eqs.
(125), (126), or (144), (145), will contain 2n* equations with respect to 2n? variables. In
the same way one can introduce more autonomous (but more complex) dynamical systems
with collective? brain of higher dimensionalities.
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The discrete event dynamics of the type (145), or of its more complex versions men-
tioned above, can be linked to game? theory. Indeed here each tth player (represented by
the corresponding variable w;) tries to achieve its local objective by taking into account the
knowledge about possible. local objectives of another players. However, in contradistinction
to the classical game theory which can be associated with artificial intelligence (since it
is based upon sets of rules and strategies), the discrete event c1 ynamics version discussed
above, can be rather associated with neural networks: it is represented by a dynamical
system, and the knowledge is acquired and stored in the cocfficients7ij and Qij in the
course of learning,.
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